If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+27y-9=0
a = 10; b = 27; c = -9;
Δ = b2-4ac
Δ = 272-4·10·(-9)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-33}{2*10}=\frac{-60}{20} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+33}{2*10}=\frac{6}{20} =3/10 $
| -632c-7=5c | | (x-19)/3=-6 | | 4(y+2)-2(5-3y)=8 | | 13c–12=15c–16 | | 24=2(1+t) | | (x+12)/7=-2 | | 20+12u+18=-7+3u | | 3+4m=12-2m | | -12+5k=-9 | | -1=d/5 | | -1=d5 | | -2(-4-6x)=-10+3 | | 2(3y+4+2)=196−16 | | 4x+17=2(3x-8)+x | | 2z/9-4=-1 | | 14+5n=-4n+16 | | 3+4y=16 | | -2=z6 | | 2x+45=47 | | 54=7+x16 | | -2(6v+6)=-6(v+6) | | 4+6(-6n-1)=-(8n+2) | | -x/3-13=0 | | -4=q–3 | | 3×7=19+n | | 9x-32=114 | | 45x/x^2-36=9 | | -5y/3+3=8 | | -x13-13=0 | | 30=5p | | 11x-12-(4x+1)=7x-13 | | x^2+(2x)^2=45^2 |